Agricultural robots and drones to become a $45 billion industry by 2038

Robotic technology is quietly transforming the world of agriculture. It is estimated that around 700 thousand tractors equipped with autosteer or tractor guidance will be sold in 2028. According to the Agricultural Robots and Drones 2018-2038: Technologies, Markets, Players report over 40 thousand unmanned fully-autonomous tractors will be sold in 2038. The take up will remain slow as users will only slowly become convinced that transitioning from level 4 to level 5 autonomy is value for money. This process will be helped by the rapidly falling price of the automaton suite.

Photo Credits:

The rise of fleets of small agricultural robots
Autonomous mobile robots are causing a paradigm shift in the way we envisage commercial and industrial vehicles. In traditional thinking, bigger is often better. This is because bigger vehicles are faster and are thus more productive. This thinking holds true so long as each vehicle requires a human driver. The rise of autonomous mobility is, however, upending this long-established notion: fleets of small slow robots will replace or complement large fast manned vehicles.

These robots also appear like strange creatures at first: they are small, slow, and lightweight. They, therefore, are less productive on a per unit basis than traditional vehicles. The key to success, however, lies in fleet operation. This is because the absence of a driver per vehicle enables remote fleet operation. Our model suggests that there is a very achievable operator-to-fleet-size ratio at which such agrobots become commercially attractive in the medium term.

Implements will become increasingly intelligent
Implements predominantly perform a purely mechanical functional today. There are some notable exceptions, particularly in organic farming. Here, implements are equipped with simple row-following vision technology, enabling them to actively and precisely follow rows.

This is, however, changing as robotic implements become highly intelligent. Indeed, early versions essentially integrated multiple computers onto the implement. These are today used for advanced vision technology enabled by machine learning (e.g., deep learning). Here, the intelligent implements learn to distinguish between crops and weeds as the implement is pulled along the field, enabling them to take site-specific weeding action.

Drones bring in increased data analytics into farming
Agriculture will be a major market for drones, reaching over $420m in 2028. Agriculture is emerging as one of the main addressable markets as the drone industry pivots away from consumer drones that have become heavily commoditised in recent years.

Drones in the first instances bring aerial data acquisition technology to even small farm operators by lowering the cost of deployment compared to traditional methods like satellites. This market will grow as more farmers become familiar with drone technology and costs become lower. The market will also change as it evolves: drones will take on more functionalities such as spraying and data analytic services that help farmers make data-driven decisions will grow in value.

Note that the use of unmanned aerial technology is not just limited to drones. Indeed, unmanned remote-controlled helicopters have already been spraying rice fields in Japan since early 1990s. This is a maturing technology/sector with overall sales in Japan having plateaued. This market may, however, benefit from a new injection of life as suppliers diversify into new territories

Robotics in dairy farms is a multibillion-dollar market already
Thousands of robotic milking parlours have already been installed worldwide, creating a $1.6bn industry. This industry will continue its grow and will reach more territories globally as productivity is established.

Mobile robots are also already penetrating dairy farms, helping automate tasks such as feed pushing or manure cleaning. These mobile robots are more akin to automated guided vehicles following some type of fixed infrastructure.

Leave a Reply

%d bloggers like this: